HỌC VIỆN HOÀNG GIA
Bài 3: Diện tích tam giác
Đề thi đã ghi nhận 10668 lượt thi, với 11 câu hỏi được thiết kế nhằm đánh giá toàn diện kiến thức môn Toán Lớp 8 của học sinh. Thời gian làm bài là . Đề thi nhận được hơn 536 lượt đánh giá tích cực từ những học sinh đã tham gia làm bài
LÀM BÀI THI
Hãy cắt một tam giác thành ba mảnh để ghép lại thành một hình chữ nhật.
Giải thích vì sao diện tích của tam giác được tô đậm trong hình 128, 129, 130 bằng nửa diện tích hình chữ nhật tương ứng.
Trong mỗi hình trên ta đều có:
Diện tích hình chữ nhật là: a.h
Diện tích tam giác là:
⇒ Diện tích của tam giác bằng nửa diện tích hình chữ nhật tương ứng.
Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức AB.OM = OA.OB
Ta có cách tính diện tích ΔAOB với đường cao OM và cạnh đáy AB:
Ta lại có cách tính diện tích ΔAOB vuông với hai cạnh góc vuông OA, OB là:
Cho tam giác ABC và đường trung tuyến AM (h.132). Chứng minh: SAMB = SAMC
Kẻ đường cao AH.
Ta có:
Mà BM = CM (vì AM là trung tuyến)
⇒ SAMB = SAMC (đpcm).
a) Xem hình 133. Hãy chỉ ra các tam giác có cùng diện tích (lấy ô vuông làm đơn vị diện tích)
b) Hai tam giác có diện tích bằng nhau thì có bằng nhau hay không?
a) Các tam giác số 1, 3, 6 có cùng diện tích là 4 ô vuông
Các tam giác số 2, 8 có cùng diện tích là 3 ô vuông.
Các tam giác số 4, 5, 7 không có cùng diện tích với các tam giác nào khác (diện tích tam giác số 4 là 5 ô vuông, tam giác số 5 là 4, 5 ô vuông, tam giác số 7 là 3,5 ô vuông).
b) Hai tam giác có diện tích bằng nhau thì không nhất thiết bằng nhau.
Vì diện tích của tam giác là nửa tích của độ dài đáy với chiều cao tương ứng của đáy, nên chỉ cần tích của đáy với chiều cao bằng nhau thì hai tam giác đó có diện tích bằng nhau, hai cạnh còn lại có thể khác nhau.
- Ví dụ như các tam giác 1, 3, 6 có cùng diện tích nhưng không bằng nhau.
Vẽ hình chữ nhật có một cạnh bằng cạnh của một tam giác cho trước và có diện tích bằng diện tích của tam giác đó. Từ đó suy ra một cách chứng minh khác về công thức tính diện tích tam giác.
Cho ΔABC với đường cao AH.
Gọi M, N, I là trung điểm của AB, AC, AH.
Lấy E đối xứng với I qua M, D đối xứng với I qua N.
⇒ Hình chữ nhật BEDC là hình cần dựng.
Thật vậy:
Ta có ΔEBM = ΔIAM và ΔDCN = ΔIAN
⇒ SEBM = SAMI và SCND = SAIN
⇒ SABC = SAMI + SAIN + SBMNC = SEBM + SBMNC + SCND = SBCDE.
Suy ra SABC = SBCDE = BE.BC = 1/2.AH.BC. (Vì BE = IA = AH/2).
Ta đã tìm lại công thức tính diện tích tam giác bằng một phương pháp khác
Tính x sao cho diện tích hình chữ nhật. ABCD gấp ba lần diện tích tam giác ADE (h.134).
Ta có AD = BC = 5cm
Diện tích ΔADE:
Diện tích hình chữ nhật ABCD: SABCD = 5x
Theo đề bài ta có SABCD = 3SADE ⇔ 5x = 3.5 ⇔ x = 3.
Vậy x = 3cm
Tam giác PAF được vẽ trên giấy kẻ ô vuông (h.135). Hãy chỉ ra:
a) Một điểm I sao cho SPIF = SPAF
b) Một điểm O sao cho SPOF = 2.SPAF
c) Một điểm N sao cho
Gọi AH là chiều cao của tam giác APF.
Ta có: SAPF = AH.PF/2.
a) SPIF = SPAF
⇔ chiều cao IK = AH (Chung cạnh đáy PF).
⇔ I nằm trên đường thẳng song song với PF và cách PF 1 khoảng bằng AH.
b) SPOF = 2.SPAF
⇔ chiều cao OM = 2.AH
⇔ O nằm trên đường thẳng song song với PF và cách PF một khoảng bằng 2.AH
c)
⇔ chiều cao NQ = AH/2
⇔ N nằm trên đường thẳng song song với PF và cách PF một khoảng bằng AH/2.
Cho tam giác ABC. Hãy chỉ ra một số vị trí của điểm M nằm trong tam giác đó sao cho: SAMB + SBMC = SMAC
Kẻ đường cao BH, MK.
Ta có: SAMB + SBMC + SMAC = SABC (1)
Mà SAMB + SBMC = SMAC (2)
Do đó, M nằm trong ΔABC, nằm trên đường thẳng d bờ AC chứa B sao cho khoảng cách từ M đến AC = 1/2 đường cao BH.
Suy ra điểm M nằm trong ΔABC nằm trên đường trung bình của ΔABC.
Tính diện tích của một tam giác cân có cạnh đáy bằng a và cạnh bên bằng b.
Gọi h là chiều cao của tam giác cân.
Theo định lí Pitago ta có:
Tính diện tích của một tam giác đều có cạnh bằng a.
Xét tam giác đều ABC cạnh a. Dựng đường cao AH.
Trong tam giác vuông, đường cao đồng thời là đường trung tuyến nên H là trung điểm BC.
=> BH = CH =
Áp dụng định lí Py- ta- go vào tam giác vuông AHB ta được:
ĐỀ THI KHÁC TRONG BỘ ĐỀ THI
Bạn đang xem Đề số 1 thuộc bộ đề thi: Giải toán 8: Chương 2: Đa giác. Diện tích đa giác
Xem đề thi khác:
BỘ ĐỀ THI LIÊN QUAN
DANH SÁCH CÂU HỎI
Giải thích vì sao diện tích của tam giác được tô đậm trong hình 128, 129, 130 bằng nửa diện tích hình chữ nhật tương ứng.
Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức AB.OM = OA.OB
a) Xem hình 133. Hãy chỉ ra các tam giác có cùng diện tích (lấy ô vuông làm đơn vị diện tích)
b) Hai tam giác có diện tích bằng nhau thì có bằng nhau hay không?
Vẽ hình chữ nhật có một cạnh bằng cạnh của một tam giác cho trước và có diện tích bằng diện tích của tam giác đó. Từ đó suy ra một cách chứng minh khác về công thức tính diện tích tam giác.
Tam giác PAF được vẽ trên giấy kẻ ô vuông (h.135). Hãy chỉ ra:
a) Một điểm I sao cho SPIF = SPAF
b) Một điểm O sao cho SPOF = 2.SPAF
c) Một điểm N sao cho