HỌC VIỆN HOÀNG GIA

Bài 3: Hình thang cân

Đề thi đã ghi nhận 8338 lượt thi, với 11 câu hỏi được thiết kế nhằm đánh giá toàn diện kiến thức môn Toán Lớp 8 của học sinh. Thời gian làm bài là . Đề thi nhận được hơn 323 lượt đánh giá tích cực từ những học sinh đã tham gia làm bài

LÀM BÀI THI

Cho hình 24.

a) Tìm các hình thang cân.

b) Tính các góc còn lại của mỗi hình thang cân đó.

c) Có nhận xét gì về hai góc đối của hình thang cân ?

Để học tốt Toán 8 | Giải toán lớp 8

a) Các hình thang cân là : ABDC, IKMN, PQST

b) Áp dụng định lí tổng các góc của một tứ giác bằng 3600

⇒ góc D = 360o- 80o- 80o- 100o = 100o

Góc N = 70o(so le trong với góc 70o)

Góc S = 360o- 90o- 90o- 90o = 90o

c) Hai góc đối của hình thang cân bù nhau

Cho đoạn thẳng CD và đường thẳng m song song với CD (h.29). Hãy vẽ các điểm A, B thuộc m sao cho ABCD là hình thang có hai đường chéo CA, DB bằng nhau. Sau đó hãy đo các góc C ̂ và D ̂ của hình thang ABCD đó để dự đoán về dạng của các hình thang có đường chéo bằng nhau.

Để học tốt Toán 8 | Giải toán lớp 8

Để học tốt Toán 8 | Giải toán lớp 8

Hai góc C và D bằng nhau

⇒ Hình thang có hai đường chéo bằng nhau là hình thang cân

Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài của cạnh ô vuông là 1cm).

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

(Mỗi ô vuông là 1cm).

Nhìn vào hình vẽ ta thấy :

+ AB = 2cm

+ CD = 4cm.

+ Tính AD :

Xét tam giác vuông ADE có AE = 1cm, DE = 3cm.

⇒ AD2 = AE2 + DE2 (Định lý Pytago)

= 12 + 32 = 10

⇒ AD = √10 cm

+ Tính BC :

ABCD là hình thang cân nên BC = AD = √10 cm.

Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm.

Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.

Giải bài 12 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Vì hình thang ABCD cân

    AD = BC;

    Ĉ = D̂

Xét hai tam giác vuông AED và BFC có:

    AD = BC

    Ĉ = D̂

⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)

⇒ DE = CF.

Cho hình thang cân ABCD (AB//CD), E là giao điểm của hai đường chéo. Chứng minh rằng EA = EB, EC = ED.

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

Trong các tứ giác ABCD, EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

Giải bài 14 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 14 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét tứ giác ABCD

Nhận thấy AB // CD ⇒ Tứ giác ABCD là hình thang.

Xét ΔACK vuông tại K ta có: AC2 = AK2 + KC2 = 42 + 12 = 17

Tương tự ta có BD2 = 42 + 12 = 17

⇒ AC2 = BD2

⇒ AC = BD

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

+ Xét tứ giác EFGH

FG // EH ⇒ Tứ giác EFGH là hình thang.

Lại có : EG = 4cm

FH2 = 22 + 32 = 13 ⇒ FH = √13 ≠ EG.

Vậy hình thang EFGH có hai đường chéo không bằng nhau nên không phải hình thang cân.

Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D, E sao cho AD = AE

a) Chứng minh rằng BDEC là hình thang cân.

b) Tính các góc của hình thang cân đó, biết rằng góc A = 50o.

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc ở vị trí đồng vị ⇒ DE // BC

⇒ Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b)

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

Hình thang ABCD (AB // CD) có Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Chứng minh rằng ABCD là hình thang cân.

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi E là giao điểm của AC và BD.

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDC cân tại E ⇒ ED = EC (1)

+ AB//CD ⇒ Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Các cặp góc so le trong)

Mà Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔEAB cân tại E ⇒ EA = EB (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

Chứng minh định lý: "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng:

a) ΔBDE là tam giác cân.

b) ΔACD = ΔBDC

c) Hình thang ABCD là hình thang cân.

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32) Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho là bốn đỉnh của một hình thang cân.

Giải bài 19 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có thể xác định hai điểm M thỏa mãn như dưới hình.

Giải bài 19 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

ĐỀ THI KHÁC TRONG BỘ ĐỀ THI

Bạn đang xem Đề số 1 thuộc bộ đề thi: Giải toán 8: Chương 1: Tứ giác

Xem đề thi khác:

DANH SÁCH CÂU HỎI

Cho hình 24.

a) Tìm các hình thang cân.

b) Tính các góc còn lại của mỗi hình thang cân đó.

c) Có nhận xét gì về hai góc đối của hình thang cân ?

Để học tốt Toán 8 | Giải toán lớp 8

Cho đoạn thẳng CD và đường thẳng m song song với CD (h.29). Hãy vẽ các điểm A, B thuộc m sao cho ABCD là hình thang có hai đường chéo CA, DB bằng nhau. Sau đó hãy đo các góc C ̂ và D ̂ của hình thang ABCD đó để dự đoán về dạng của các hình thang có đường chéo bằng nhau.

Để học tốt Toán 8 | Giải toán lớp 8

Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài của cạnh ô vuông là 1cm).

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.

Cho hình thang cân ABCD (AB//CD), E là giao điểm của hai đường chéo. Chứng minh rằng EA = EB, EC = ED.

Trong các tứ giác ABCD, EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

Giải bài 14 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D, E sao cho AD = AE

a) Chứng minh rằng BDEC là hình thang cân.

b) Tính các góc của hình thang cân đó, biết rằng góc A = 50o.

Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Hình thang ABCD (AB // CD) có Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Chứng minh rằng ABCD là hình thang cân.

Chứng minh định lý: "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng:

a) ΔBDE là tam giác cân.

b) ΔACD = ΔBDC

c) Hình thang ABCD là hình thang cân.

Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32) Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho là bốn đỉnh của một hình thang cân.

Giải bài 19 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8