HỌC VIỆN HOÀNG GIA
CÂU HỎI
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số trên đoạn [ 0; 2] bằng 3. Số phần tử của S là
ĐỀ THI
Câu hỏi thuộc đề thi: 200 Trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao
LỜI GIẢI
+ Xét hàm số f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .
Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận ) hoặc x= -1( loại)
+ Suy ra GTLN và GTNN của f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.
+ Xét hàm số trên đoạn [0; 2 ] ta được giá trị lớn nhất của y là
TH1: m= 3 thì max {1;3;5}= 5 ( loại )
TH2:
+ Với m= -1. Ta có max {1; 3}= 3 (nhận).
+Với m= 5. Ta có max { 3;5;7}= 7 (loại).
TH3:
+ Với m= 1. Ta có max {1; 3}= 3 (nhận).
+ Với m= -5. Ta có max {3;5;7}= 7 (loại).
Do đó m= -1 hoặc m= 1
Vậy tập hợp S có 2 phần tử.
Chọn B.
CÂU HỎI CÙNG BÀI THI
Cho hàm số y=x4-(3m+4) x2+ m2 có đồ thị là C. Có mấy giá trị nguyên của m để đồ thị C cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng.
Cho phương trình x3- 3x2+ 1- m=0 (1) . Điều kiện của tham số m để (1) có ba nghiệm phân biệt thỏa m ãn x1< 1< x2<x3 khi
Cho đồ thị C: y= 2x3-3x2-1. Gọi d là đường thẳng qua A( 0; -1) có hệ số góc bằng k . Tất cả giá trị k để C cắt d tại ba điểm phân biệt là
Với những giá trị nào của tham số m thì (C) : y= x3- 3( m+ 1) x2+ 2( m 2+ 4m+1 ) x-4m( m+1 ) cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1?
Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng d: y= 5x- 9 . Tính tổng tất cả các phần tử của S.
Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.
Cho hàm số có đồ thị C và d: y= x+ m. Giá trị của tham số m để d cắt C tại hai điểm phân biệt A; B sao cho tiếp tuyến tại A và B song song với nhau.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y= - mx lần lượt cắt đồ thị của hàm số y= x3- 3x2-m+ 2 tại ba điểm phân biệt theo thứ tự A; B; C sao cho AB = BC.
Cho hàm số y= x3- 3x2-m- 1 có đồ thị ( C) . Giá trị của tham số m để đồ thị C cắt trục hoành tại ba điểm phân biệt lập thành cấp số cộng là
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số trên đoạn [ 0; 2] bằng 3. Số phần tử của S là
Cho hàm số y = f(x).Hàm số y= f’(x) có đồ thị như hình bên. Hỏi hàm số y= f(2-x) đồng biến trên khoảng:
Cho hàm số có đồ thị (C) và điểm A( a; 1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến từ C đi qua A. Hỏi trong tập S có bao nhiêu giá trị nguyên
Cho hàm số y= x4- (2m-1) x2+2m có đồ thị (C) . Có tất cả bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y= 2 cắt đồ thị (C) tại bốn điểm phân biệt đều có hoành độ lớn hơn 3 là
Cho hàm số y= x3- 3mx2+ 3( m+1) x+1 (1) với m là tham số. Gọi (C) là đồ thị hàm số (1) và K là điểm thuộc (C) có hoành độ bằng -1. Tìm tất cả các giá trị của tham số m để tiếp tuyến của ( C) tại điểm K song song với đường thẳng d: 3x+ y= 0 là
Cho hàm số y= x3- x2+ x + 1 có đồ thị ( C) . Tiếp tuyến tại điểm N( x; y) của (C) cắt đồ thị (C) tại điểm thứ hai là M( -1; -2) . Khi đó x+ y=?